
Spline-Based Path Following
Qingyuan Li

Code & demonstration video found on Github.

Problem Statement

Create an algorithm that interpolates a smooth path between two poses. Given the robot pose relative
to the path, return differential drive motor outputs to follow the path based on a motion profile.

Pose: (x, y, θ) combination of point and angle.
Differential drive: drivetrain model assuming two separately driven wheels on either side of the robot.

Methodology

1. The Path

I decided to use Quintic Hermite splines, a type of Hermite interpolation that creates a parametric
function satisfying𝑐(𝑡)

.𝑐(0) = 𝑝
0
 , 𝑐(1) = 𝑝

1
 , 𝑐'(0) = 𝑣

0
 , 𝑐'(1) = 𝑣

1
 , 𝑐''(0) = 𝑎

0
 , 𝑐''(1) = 𝑎

1

The most convenient definition was using six basis functions (fifth degree polynomials) and
multiplying by the position, velocity, and acceleration vectors:

This yields a smooth parametric between the two points whose curvature and “momentum” can easily
be edited via the velocity and acceleration vectors.

https://github.com/mittyrobotics/path-following

Live Demo: https://www.desmos.com/calculator/fikl0h8vvi

2. The Robot Pose

To track the field-relative robot pose in (x, y, θ) form, I used a combination of gyro, encoder values and
computer vision pose data. To integrate these different value points, I used a Kalman filter. Whereas
the gyro and encoder are precise in the short-term, vision data’s accuracy can be used to correct any
long-term error buildup. This was accounted for using the appropriate noise covariance matrices.

Encoder to pose:
Since the code is being run every 20ms, I can interpolate the arc as a line segment with the length being
the average distance driven by the two motors and the direction being the gyro angle. This vector is
added to the (x, y) pose every cycle. The gyro updates θ automatically.

https://www.desmos.com/calculator/fikl0h8vvi

Encoder: sensor that measures how much a motor turns.
Kalman filter: common state-space algorithm that uses measurements over time to create a more accurate
estimate of a state, by estimating a joint probability distribution of the state’s variables.

3. Differential Drive Kinematics

Differential drive, by definition, must travel along the arc of a circle. I define it using linear velocity, l,
and angular velocity, w.

From the common formula l=wr, I can derive the radius r of the differential drive circle from l and w.
Then, the velocities of the left and right wheels given only depend on the distance between them,
which I will call the trackwidth (T).

.𝑟 = 𝑙/𝑤 , 𝑣
𝑙𝑒𝑓𝑡

= 𝑤 · (𝑟 − 𝑇/2) , 𝑣
𝑟𝑖𝑔ℎ𝑡

= 𝑤 · (𝑟 + 𝑇/2)

This is easily derived from l=wr where the radius for each wheel is different. To account for turning
right versus turning left, I define turning right to be negative angular velocity. This also makes radius
negative, so the two cancel, such that .𝑣

𝑙𝑒𝑓𝑡
> 𝑣

𝑟𝑖𝑔ℎ𝑡
> 0

4. Following the Path

To break down the two path following algorithms I implemented:

Pure Pursuit takes in the robot pose and the spline, then finds the point on the spline closest to the
robot pose. It then finds the point on the spline a certain distance in front of the closest point.

This distance, called the lookahead, can be tuned to edit the behavior of the path. It then interpolates a
circular arc between the robot pose and the lookahead that is tangent to the robot pose angle and
intersects both points.

This arc can be followed using differential drive kinematics by inputting the linear velocity (from the
motion profile) and radius of the arc, this time solving for the angular instead. Although the arc looks
sharp here, the algorithm is updating every 20ms, so as the robot gets closer to the spline the curvature
decreases. This has the effect of rapidly correcting any error while minimizing overshooting.

Examples of error correction in my simulator. Note
how well the first robot follows the spline given no
physical errors with a smaller lookahead. In practice, a
longer lookahead distance like the one in the second
image would be used to make the path more adaptable
to physical error. This parameter is tuned for each
path for maximum effectiveness.

The Ramsete Unicycle Controller is a lot more complex. It is based on the following paper:
https://www.researchgate.net/publication/225543929_Control_of_Wheeled_Mobile_Robots_An_E
xperimental_Overview.

It uses arbitrary functions that have associated Lyapunov functions which prove global asymptotic
stability. It takes in the robot pose and desired pose (in our case, the closest point on the spline) and
uses the errors, in combination with two gain constants, b and ζ, to return a linear and angular velocity
that results in rapid convergence with the spline. The linear and angular velocity outputs can be
converted into differential drive outputs through the aforementioned kinematics.

https://file.tavsys.net/control/controls-engineering-in-frc.pdf offers a summary of the equations:

https://www.researchgate.net/publication/225543929_Control_of_Wheeled_Mobile_Robots_An_Experimental_Overview
https://www.researchgate.net/publication/225543929_Control_of_Wheeled_Mobile_Robots_An_Experimental_Overview
https://file.tavsys.net/control/controls-engineering-in-frc.pdf

Here, it converges… somewhat. Having two somewhat
arbitrary values makes Ramsete harder to tune. However,
for short curves it is preferred to Pure Pursuit, which is less
accurate at short distances because it follows its own arc
and not the spline.

5. Implementing these Algorithms

For either of these algorithms, I need the point on the spline closest to the robot pose.
I found that the easiest way was to use Newton’s method on the square of the distance function D² =d²
between the spline and the point.

This function returns the 1st and 2nd derivatives of the squared distance function at a specific t value
of the parametric for a given point. According to Newton’s method, to get the zeroes a function, we
can iterate our initial guess x many times:

We do this with D² ’ and D² ’’ instead of D² and D² ’ to find the zeros of D² ’, which are the local
minimums/maximums of the squared distance. To account for all local minimums, I iterate through a
series of equidistant initial starting points and use the one that returns the overall minimum distance.

The returned t can then be plugged into c(t) to get the closest point. Done!

Here is the result with 25 initial starting points:

https://en.wikipedia.org/wiki/Newton%27s_method

For Pure Pursuit, I also need a way to get the lookahead, a certain distance in front of the closest point
on the spline.

Any approach will need a way to efficiently get the length of the spline, or a portion of it. Because a
Quintic Hermite spline is defined by polynomials, Gaussian quadrature is the easiest method to
efficiently get the length. From Wikipedia:

This is on the interval [-1, 1]. For other intervals, we can use the change of interval formula:

I implemented this in a function:

In practice, I almost always use 17-th degree weights and abscissae to balance accuracy and speed.

First value is using 17-th degree Gaussian quadrature, second is by manually adding up the distance
between 1000 equidistant points on the spline (brute force approximation). The accuracy of
quadrature with polynomials is frankly uncanny.

With a way to get the length of a portion of the spline, getting the lookahead is relatively easy. I can get
the length of the spline up to the closest point, add the lookahead distance, and compute the t value
that corresponds to that length. I wrote a short length-to-t algorithm:

https://en.wikipedia.org/wiki/Gaussian_quadrature

This first approximates t by dividing the desired length by the total length of the spline. Then, for five
iterations, I assume that the path follows its derivative at that point perfectly, and add (remaining error
/ magnitude of derivative) to t.

For example, if we were at 4 inches with a desired length of 5 inches, and the magnitude of the
derivative is 20 inches/t, we would add (5-4)/20 = 0.05 to t. Assuming that the path continued in a
straight line at a rate of 20 inches/t at that point, we would be at the perfect t. Because paths are curves,
we must iterate this process to increase accuracy. After five iterations, the t is accurate enough to be
used, and we plug it into c(t) to get the lookahead point.

All I need to account for still is if the lookahead distance is greater than the distance left in the spline. I
added a case for this scenario: if distance traveled plus lookahead is greater than spline length, I can
“extend” the path in a straight line beyond the end pose with the same angle as the end pose.

6. Motion Profile

The trapezoidal motion profile is easy to implement. To limit acceleration and velocity, the upper
bound of the current velocity is:
𝑣𝑒𝑙

𝑐𝑢𝑟𝑟𝑒𝑛𝑡
= 𝑚𝑖𝑛(𝑣𝑒𝑙

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
+ 𝑎𝑐𝑐𝑒𝑙

𝑚𝑎𝑥
· 𝑑𝑡, 𝑣𝑒𝑙

𝑚𝑎𝑥
)

where is time passed since the last iteration.𝑑𝑡

To limit deceleration, I can get the distance to the end with Gaussian quadrature 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

, 1)

and then use the physics equation . With as the positive maximum𝑣
𝑓

2 = 𝑣
𝑖
2 + 2𝑎𝑑 𝑑𝑒𝑐𝑒𝑙

𝑚𝑎𝑥

deceleration, I can solve for the maximum possible current velocity given :𝑣
𝑖

𝑣
𝑓

= min(,𝑣𝑒𝑙
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑣𝑒𝑙
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑣
𝑓

2 + 2 · 𝑑𝑒𝑐𝑒𝑙
𝑚𝑎𝑥

· 𝑑𝑖𝑠𝑡
𝑒𝑛𝑑

)

This concludes the trapezoidal motion profile. However, I also need to limit angular velocity (a fast,
heavy robot should not be turning rapidly). Using l=wr, solving for the maximum possible l, we get

. To get r, I used the fact that the curvature k of a spline is equal to 1/r, where r is the𝑙
𝑚𝑎𝑥

= 𝑤
𝑚𝑎𝑥

· 𝑟

radius of the circle that approximates the curve exactly at that point (ideally the arc that will be
followed there).

for a parametric c(t)=<x(t), y(t)> from Wikipedia.
Then, the maximum linear velocity at a point is where k is the curvature at that point.𝑤

𝑚𝑎𝑥
· (1/𝑘)

To make sure that the robot decelerates so that it is always under the maximum angular velocity, I again

utilize the 20ms cycle time. Every cycle, I use the previous equation but with as𝑣
𝑓

2 = 𝑣
𝑖
2 + 2𝑎𝑑 𝑣

𝑖

the current velocity and to see the minimum distance the robot needs to stop completely:𝑣
𝑓

= 0

.𝑑𝑖𝑠𝑡
𝑚𝑖𝑛

= 𝑣
𝑖
2/(2 * 𝑑𝑒𝑐𝑒𝑙

𝑚𝑎𝑥
)

(total distance to calculated point)𝑑
𝑖

= 𝑑𝑖𝑠𝑡
𝑐𝑙𝑜𝑠𝑒𝑠𝑡

+ 𝑑𝑖𝑠𝑡
𝑚𝑖𝑛

This makes sure that the robot always has time to decelerate, even as at approaches 0.𝑙
𝑚𝑎𝑥

𝑑
𝑖

I can get at by using the length-to-t algorithm from earlier:𝑙
𝑚𝑎𝑥

𝑑
𝑖

where =𝑙
𝑚𝑎𝑥

= 𝑤
𝑚𝑎𝑥

· (1/𝑘(𝑡)) 𝑙𝑒𝑛𝑔𝑡ℎ(0, 𝑡) 𝑑
𝑖

https://en.wikipedia.org/wiki/Curvature

I add this value of to an array of (,), removing any old values from the array where is𝑙
𝑚𝑎𝑥

𝑙
𝑚𝑎𝑥, 𝑖

𝑑
𝑖

𝑑
𝑖

less than current distance traveled (i.e. the robot has passed that point). For every element in the array, I

again apply to make sure the robot has time to decelerate.𝑣
𝑓

2 = 𝑣
𝑖
2 + 2𝑎𝑑

= min(,𝑣𝑒𝑙
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑣𝑒𝑙
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑙
𝑚𝑎𝑥, 𝑖

2 + 2 · 𝑑𝑒𝑐𝑒𝑙
𝑚𝑎𝑥

· (𝑑
𝑖
− 𝑑𝑖𝑠𝑡

𝑐𝑙𝑜𝑠𝑒𝑠𝑡
)

for all (,).𝑙
𝑚𝑎𝑥, 𝑖

𝑑
𝑖

7. Combined Algorithm

After creating all the necessary functions, creating the algorithm is easy. Every 20ms cycle, I can get the
closest point on the spline from the current robot pose (updated through odometry).

For Pure Pursuit, I can get the lookahead using this point, and I pass the robot pose and lookahead
point to the controller, which returns the Pure Pursuit radius . I then pass (,), where𝑟 𝑣𝑒𝑙

𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑟

is the desired velocity from the motion controller, to differential drive kinematics.𝑣𝑒𝑙
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

For Ramsete, I pass the robot pose and closest point directly to the controller, along with the current
desired velocity and current desired angular velocity . It𝑣𝑒𝑙

𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑤 = 𝑣𝑒𝑙

𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 /𝑟 = 𝑣𝑒𝑙

𝑐𝑢𝑟𝑟𝑒𝑛𝑡
· 𝑘

returns (,) which can be passed to differential drive kinematics.𝑣𝑒𝑙
𝑅𝑎𝑚𝑠𝑒𝑡𝑒

𝑤
𝑅𝑎𝑚𝑠𝑒𝑡𝑒

Using velocity PID with feed forward, differential drive kinematics moves the two powered wheels of
the robot at the desired velocities. Odometry tracks the movement, and the algorithm updates
accordingly the next cycle. I end the path when the robot pose is within a certain threshold of the end
pose.

PID: Proportional-integral-derivative controller, a type of feedback control loop that uses the error value
between the current state and the setpoint (desired state).

Feed forward: a type of open-loop control. Here, I multiply the feed forward constant (percent output to
motor / velocity), which can be measured, by the desired velocity, getting a percent output that
approximately reaches the desired velocity. PID corrects for the remaining error. By decreasing the error
that PID has to work with, the response speed of the algorithm is improved significantly.

