
AprilTag Pose Estimation
& Robot Program

Qingyuan Li

See demo video. Codebase is private.

Problem Statement

Create a robot program, controlled over local-area network, using AprilTags for pose estimation with
specialized kinematics to adapt the pose to motor controls.

Methodology — Vision

1. Tools used

Vision targets are standard Tag36h11 AprilTags printed on Dibond, 16mm by 16mm with a 4mm
white border for detection. They are mounted on a custom designed platform. For pose estimation
purposes, the center of the platform is (0, 0, 0) in world coordinates, and the corners of each target are
measured to 0.5mm relative to the center.

Note: the demonstration video shows an older iteration of the targets, with Apriltags printed on stickers.
They are less accurate than Dibond due to distortion and misalignment, but still work decently.

Because my vision targets are small, I needed a relatively high resolution, low latency camera that was
still inexpensive. I ended up using a standard 1080p Logitech webcam. All code runs on a Dell laptop
with Ubuntu 20.04 LTS installed (for ease of package management).

2. Video Detection and Pose Estimation

The computer vision itself was relatively simple to implement. I used the AprilRobotics apriltag library
and OpenCV for general vision processing. The OpenCV VideoCapture class virtualizes the webcam.
Once an image has been captured in matrix form, the apriltags library has a detector that returns the

https://youtu.be/2Ws0EJPqu6o
https://github.com/AprilRobotics/apriltag
https://github.com/opencv/opencv

corners and ID of every AprilTag in the frame. After refining the corners to the subpixel using
OpenCV’s cornerSubPix algorithm, I match each corner’s 2D camera coordinate with a pre-measured
3D world coordinate and use OpenCV’s PNP (perspective-n-point) algorithm to solve for the location
of (0, 0, 0) relative to the camera.

PNP returns rotation and translation vectors. To convert rotation vectors to a more usable form, I use
the Rodrigues function to get them as a 4x4 rotational matrix. Then, using ROS (Robot Operating
System)’s function, I convert said matrix to Euler angles ([α, β, γ]—[pitch, yaw, roll], relative to x, y, z
axes). Now, I have the translational vectors [x, y, z] in millimeters and [α, β, γ] in radians.

Here are some results from testing. The measured distance is around
742±3 mm, while the PNP distance is 743±1mm. Angles also look
reasonable, although they are much harder to measure. Given the
relatively large distance compared to the tiny tags, these results are
highly accurate given the available hardware.

3. Robot Program

With the vision working, I needed a way to run a robot program that can be controlled over local-area
network (LAN) and can be combined with additional programs (such as a simulator, Arduino
connection, debug screen, etc). I created two separate programs, a web application using Flask with
Python, and a robot program that runs in an infinite loop at approximately 50 Hz.

Initially, I used JSON files to communicate between the programs. Unfortunately, I would often run
into the issue of race conditions, when one of the programs would read the file while the other was
writing to it, resulting in either incomplete information or crashing. I could not find a way to easily
solve this problem; if it was really necessary, either using an external database with race condition
protection or locking the other program while updating, such as with Python’s threading.Lock with
the two programs as separate threads, would likely have worked.

However, there turned out to be a couple of simpler solutions. Given the scenario of a separately
running server and robot program, I successfully used sockets (a type of inter-process communication
between processes that uses a specific port over LAN) to communicate; as one program would wait for
the other to send data or a “confirmation” for necessarily synchronous processes. This completely
solved the issue of race conditions. However, the latency created by using LAN was still an issue that
could be improved upon.

I realized that the robot program and webapp, in practice, would always be run together. So instead of
running them separately, I created another short script to run them asynchronously as daemon threads.
This way, I could create a global “storage” object and pass it to both processes, which could then
communicate by checking for any updates to the object. Although theoretically this still has a race
condition, the speed of updating memory and (hopefully) some sort of builtin race condition
protection should prevent the issue from arising.

The benefit to this method is that it allows me to trivially add new programs, for example a Serial port
connection to the Arduino and a separate simulator app. Here is the “main” file:

https://flask.palletsprojects.com/en/2.2.x/
https://docs.python.org/3/library/socket.html

4. (a) XY Intersection Demo

One milestone was to get a demonstration of using pose estimation to get the intersection of the
normal vector of the AprilTags target and an arbitrarily defined plane. I used the origin coordinates
relative to the camera (x, y, z) and Euler angles (α, β, γ).

To create the equation of the line, I converted Euler angles into a unit directional vector as per the
definition of spherical coordinates, only with α and β flipped.

𝑣
→

 = < 𝑠𝑖𝑛(β) · 𝑐𝑜𝑠(α), 𝑠𝑖𝑛(α), 𝑐𝑜𝑠(β) · 𝑐𝑜𝑠(α) >

I could then define the line as two points:
(original center)𝐿

0
= (𝑥, 𝑦, 𝑧)

(center plus directional vector)𝐿
1

= (𝑥 + 𝑠𝑖𝑛(β) · 𝑐𝑜𝑠(α), 𝑦 + 𝑠𝑖𝑛(α), 𝑧 + 𝑐𝑜𝑠(β) · 𝑐𝑜𝑠(α))

The plane is defined relative to the camera. I chose to use the representation of any three points on the
plane, for ease of definition. I assumed here that the plane was just the XY plane of the camera and
defined it as

< 𝐴, 𝐵, 𝐶 > = < (0, 0, 0), (1, 0, 0), (0, 1, 0) >

The algorithm I use for intersection of a line and plane takes in the normal vector of the plane, plus a
point on the plane, as input. To convert to a normal vector, I can take the cross product< 𝐴, 𝐵, 𝐶 >
of two of the vectors between the points (cross product geometrically represents the vector
perpendicular to the intersection of the two vectors).

𝑃
𝑁𝑜𝑟𝑚𝑎𝑙

= (𝐵 − 𝐴) × (𝐶 − 𝐴)

Now I can run the algorithm (found on StackOverflow):

My code using the algorithm:

I now have the coordinate of the intersection in millimeters.

https://stackoverflow.com/questions/5666222/3d-line-plane-intersection

4. (b) XY Platform Build

I designed all of the XY linear rail platform in the demo video. It uses 6mm GT2 timing belts powered
by NEMA-17 16x microstepping stepper motors, guided by 8mm linear rods and accompanying
bearings. The mechanism is controlled by an Arduino Uno R3 with a CNC shield and Polulu A4988
motor controllers to drive the motors. All structural parts are created with CAD using Autodesk
Fusion360 and then 3D printed in PLA with an Ender 3 Pro.

The robot program communicates with the Arduino via serial port. It sends a (x, y) coordinate in
millimeters to the Arduino program every time I press a button on the webapp. The Arduino C
program converts millimeters to steps and moves the mechanism accordingly.

Renders and the build are shown below.

5. Kinematics Simulator

As another proof-of-concept, I created a kinematics simulator that runs based on inputs from the
robot program. After trying PyGame, I settled on using PyQt5 (a Python port of the popular Qt
software) for ease of creating the UI. The kinematics were just trivial trigonometry and geometry.

The red and green points can be dragged, and the display values on the bottom are edited accordingly
using forward kinematics. The red points are bounded by the platform and each other, while the
possible range of motion of the green dots are drawn.

The seven parameters can be changed with user input, and the rendered setup is edited accordingly
using inverse kinematics. Bounding checks are used to prevent impossible configurations.

